Skip to content

Knowledge Of Sea

We will keep you updated

  • Home
  • Video
  • Chartering Terms
  • Rule of the Road (COLREG)
    • Nautical Flags
    • Rule of the Roads – CARDS
  • Tanker Definitions
  • Downloads
  • ORAL NOTES
    • ORAL NOTES- 2ND OFFICER
    • ORAL NOTES- CHIEF MATE
    • ASM ORAL NOTES 1
    • ASM ORAL NOTES 2
  • About Me
  • Exit Exam
    • FPFF exit exam questions and answers
    • EFA exit exam questions and answers
    • BST exit exam questions and answers
    • AFF DG Shipping exit exam question and answers
  • Toggle search form

Angle Of Loll

Posted on November 24, 2019November 24, 2019 By admin No Comments on Angle Of Loll

When a ship with negative initial metacentric height is inclined to a small angle, the righting lever is negative, resulting in a capsizing moment. This effect is shown in Figure and it can be seen that the ship will tend to heel still further.

At a large angle of heel the centre of buoyancy will have moved further out the low side and the force of buoyancy can no longer be considered to act vertically upwards though M, the initial metacentre.

To calculate the angle of loll

When the vessel is `wall-sided’ between the upright and inclined waterlines, the GZ may be found using the formula:

GZ = Sin Ө (GM + ½BM tan²Ө)

At the angle of loll:

GZ = 0

Therefore either sin Ө = 0

or

(GM + ½BM tan²Ө) = 0

If

sin Ө = 0

then

Ө = 0

But then angle of loll cannot be zero, therefore:

(GM + ½BM tan²Ө) = 0

½BM tan²Ө = – GM

BM tan²Ө= – 2GM

tan²Ө= – 2GM/BM

tanӨ=  √-(2GM/BM)

The angle of loll is caused by a negative GM, therefore:

tanӨ=  √-(-2GM/BM)

tanӨ=  √(2GM/BM)

If, by heeling still further, the centre of buoyancy can move out far enough to lie vertically

under G the centre of gravity, as in Figure , the righting lever and thus the righting moment, will be zero.

The angle of heel at which this occurs is referred to as the angle of loll and may be defined as the angle to which a ship with negative initial metacentric height will lie at rest in still water.

If the ship should now be inclined to an angle greater than the angle of loll, as shown in Figure, the righting lever will be positive, giving a moment to return the ship to the angle of loll. 

From this it can be seen that the ship will oscillate about the angle of loll instead of the upright.

Curve of statical stability at Angle of Loll

The curve of statical stability for a ship in this condition of loading is illustrated in Figure. Note from the figure that the GZ at the angle of loll is zero. At angles of heel less than the angle of loll the righting levers are negative, whilst beyond the angle of loll the righting levers are positive up to the angle of vanishing stability.

Note how the range of stability in this case is measured from the angle of loll and not from the `o±o’ axis.

Stability Tags:angle of loll, centre of buoyancy, centre of gravity, curve of statical stability, GZ, righting lever

Post navigation

Previous Post: Bill Of Lading
Next Post: Take Over Command Of Vessel

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Categories

  • Bulk Carrier
  • Cargo handling
  • Engine Room Operations
  • LSA & FFA
  • Maritime Industry
  • Maritime Law
  • Merchant Shipping
  • Navigation
  • Rules and Regulation
  • Ship Construction
  • Shipboard operation
  • Stability
  • Tanker
  • Uncategorized

Blog is primarily for candidates appearing for certificate of competency exams but such is the detail that while being equally suitable for the beginner, it is also reference work for experienced seaman, and the layout and style of blog make it suitable for shipboard training where practical experience can be allied to the theoretical approach.

Recent Comments

  • capt on Radar Best Practice -ARPA
  • admin on Dry Docking (Theory & Numericals)
  • Stelios Karamplakas on Dry Docking (Theory & Numericals)
  • Farid OMARI on Demurrage
  • admin on Tanker Cargo Calculations

Copyright © 2018 knowledge of sea – All Rights Reserved.

If you’re unsure about what type of training will work best for you, just tell us a little more about your needs. We will get back to you as soon as possible with the answers you need!

All answers will be from sailor mouth, who is practically working on board.

January 2026
S M T W T F S
 123
45678910
11121314151617
18192021222324
25262728293031
« Dec    

Copyright © 2026 Knowledge Of Sea.

Powered by PressBook WordPress theme

Go to mobile version